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Jolicoeur and Le Guillou have recently proposed [Phys. Rev. A 40, 5815 (1989)] a very interesting
derivation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy using functional tech-
niques. In this paper we generalized their derivation to higher-form distributions in phase space. At the
heart of our method there is a path integral for classical mechanics that we put forward some time ago.
This path integral describes the dynamics not only of scalar distributions in phase space but also of p-
form valued densities [E. Gozzi, M. Reuter, and W. D. Thacker, Phys. Rev. D 40, 3363 (1989)]. The dis-
tribution functions entering this infinite set of coupled integro-differential equations (BBGKY hierarchy)
carry a double grading now: besides the level in the hierarchy, they are characterized by their degree as
differential forms. The higher forms are related to the dynamics of the Jacobi fields and therefore con-
tain information about the behavior of nearby trajectories. This kind of information could be used in the

study of turbulence, for instance.
PACS number(s): 05.40.+j, 03.65.Db, 03.20.+i

In a series of papers [1-5] we have given a path-
integral representation of classical Hamiltonian dynam-
ics, whose operatorial counterpart generalizes the ap-
proach of Koopman and von Neumann [6] to classical
mechanics. The measure of that path integral [2] con-
tains a 8 function allowing only classical paths to contrib-
ute. This measure can be written in the familiar form
exp(iS), where the action S not only depends on the (bo-
sonic) phase-space variables ¢°(¢) a=1,...,2n, where n
is the number of degrees of freedom, but also on new an-
ticommuting ghosts ¢%¢), antighosts ¢,(¢), and auxiliary
fields A,(z). It was shown in detail in Refs. [1,2] that the
action S has a surprising Becchi-Rouet-Stora (BRS)-like
symmetry that “rotates” the phase-space variables ¢ into
the ghosts c¢? (We assume the reader is familiar with
Ref. [2] in the following.) The interesting point is that
the ghost-zero modes are precisely the Jacobi fields along
the classical trajectories and therefore carry important in-
formation about the possible chaotic behavior [7] (ex-
ponential instabilities, etc.) of the system. In an opera-
torial version of the theory [2], ¢® and €, become multi-
plication and derivative operators, respectively, acting on
generalized density functions g(¢%c% ). It is possible to
show that the ¢ s serve as a basis of the cotangent space
T3M,, to the phase space J,,.

The natural way to write the generalized densities g is

~ 1a .a )= & L (p)
plgocs)=3 —plf..
p=0 P’

a

a,(#%0)c Leole (1

We see that it has the character of an inhomogeneous
differential form on M,, since we may identify ¢¢ with
d¢°. The dynamics of the g is given by a “Schrédinger-
like” equation:

i3,p(¢,c,t)=Hp(d,c,t) . )

We called it a ““‘Schrodinger-like” equation only because
the structure is the same and not because quantum effects

47

may be present: the reader should not forget that every-
thing is classical here. This equation is just a generaliza-
tion of the classical Liouville equation. Here the “super-

Hamiltonian” #= —il, is essentially the Lie-derivative
operator [2]
I,=h", +c%3,h)(d/3c?) 3)

for the Hamiltonian vector field #¢ of Hamilton’s equa-
tions,

) =h$(1))=0"d,H($(1)) . 4)

We use the same notation as in Ref. [2], with ©®® the sym-
plectic tensor that we assume, for simplicity, constant.
Thus the antisymmetric tensor fields of Eq. (1) evolve ac-
cording to

a,pﬁ,”l)...ap(tﬁ",t):—lhpf,p])“.ap(gb“,t) , (5)
where now the Lie derivative [, acts in the usual way:
lhpizpl)' a, =h babp(apl)‘ a, +aalh bpba2 ra,
+3,, 10 a, gt (6)
In particular, the ordinary densities p(¢$?) are zero forms;

from (5) and (6) we see that their time evolution is given
by the conventional Liouville equation

3,p(¢%1)=—Lp(¢%1), (7)

where L=h%,=1,| =0 is the Liouville operator.

In Refs [1,2] the p-form generalization (5) of the Liou-
ville equation (7) was obtained as the operatorial counter-
part of the path integral of classical mechanics. In that
path integral (for details see Ref. [2]) the integration was
over “classical single-particle trajectories” ¢“(¢). In this
paper we want to develop a many-particle formalism and
it is then natural to replace the functional integration
over ¢%t) with a “functional integration over fields”
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p(#%c?t). (This is analogous to what is done when one
goes from first to second quantization, but only analo-
gous: in fact, let us not forget that everything here is clas-
sical). The physics of such a formulation will be com-
pletely equivalent to that of Ref. [2] (once an initial
many-particle distribution is chosen), but, as a “formal”
tool, this formulation of “functional integration over
classical fields g’ can be very powerful. This has been
pointed out by Jolicoeur and LeGuillou [8] who have
used a functional integral representation of Eq. (7) in or-
der to derive the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy [9,10] and the Balescu-Lenard
collision operator of a high-temperature plasma. It turns
out the ‘“integration over fields” formulation simplifies
these derivations considerably.
The path integral of Ref. [8] is the form

Z= [ Dp($)DA(¢% 1) exp [ifdz"d; dt A(¢% 1)

X[3,+Lp(¢%1) | . (8)

Integrating out the auxiliary field A( ¢% 1) we obtain a &
functional 8[(9, +L) )p], so that indeed only the solutions
of the Liouville equation (7) can contribute and the phys-
ics is not changed by the ‘““integration over fields” pro-
cedure with respect to the physics contained in Ref. [2],
provided an initial many-particle distribution is chosen
for the path integral of Ref. [2]. In this paper we are go-
ing to generalize the method of Jolicoeur and Le Guillou
by including the higher p-form sectors, i.e., by starting
from Eq. (2) instead of Liouville’s equation. The measure
is chosen such that only classical solutions p(¢“,c“¢t) of
Eq. (2) contribute to the path integral on the line of Refs.
(1,2],

Z= [Dp(¢*,c,1)8(5—pal
= [ Dp(¢%c?,t) det[d, +1,180(3, +1,)] . 9)

Introducmg additional superfields A(¢%c% 1), W(¢%c9 1),
and W(¢%c9t) the & functional and the determmant can
be exponentiated as

Z= f:Dp-z)Ki)w:Z)\Tf exp {ifd2”¢d2"c dt{A,+1,)p

+W(Q,+1,)¥} | . (10

However, contrary to the ‘sum-over-classical-phase-
space-trajectories” method [1,2], it is not really meaning-
ful to exponentiate the determinant, since (due to the
linearity of the field equation [d,+1, ]g=0) this deter-
minant is independent of g and can be absorbed into the
overall normalization of Z. Therefore in the following we
shall work with only the functional integral

Z= [ Dp(¢%c%)DR(¢% %)
X exp [ifd2"¢d2”c dt A(¢%ct)

X[, 41, 18(¢% ) | . (11)

From its action we can read off the following canonical
commutation relation:

(p(,c, ), A(¢,c',t)]=i8($— ¢ )82 (c—c') . (12)

Obviously the auxiliary field A can be considered as the
“momentum’ conjugate to p.

Now we shall use Eq. (11) as the starting point for the
derivation of a generalized BBGKY hierarchy which
closely follows Ref. [8] but which also includes higher p-
form fields. We consider a system consisting of N classi-
cal, nonrelativistic, identical particles of mass m. The
coordinates on phase space J,, are written as
{¢%a ,2n=6N}={,,i=1,...,N}, where
b= X,,P ) is the collection of all components referring
to one particle. Similarly we write for the ghosts
{c%a=1,2,...,2n=6N}={¢;,i=1,...,N}, where the
position and momentum ghosts of a specific particle are
written as ¢; =(§;,m;). We also shall use greek indices
W,v,... for the one-particle configuration space, i.e.,
X, ={X!u=1,2,3}, etc. Furthermore it is convenient to
combine the phase-space coordinates and the ghosts of a
glven partlcle into one “supercoordinate’:

(qb,, =(X;,P;,&;,m;), i=1,...,N. Accordingly
the measure reads d*"¢d>"c =dy, - dxy=d"x. The
Hamiltonian is assumed to be of the form

P2
H= 23’1—+2V(x ~X;). (13)

LJ
i<j

The resulting Hamiltonian vector field (Liouville opera-
tor) is given by

L=h%,=w™,HJ,
s | sy x-x,)-%
=l moaxr & ap,ﬂ
(14)

Here ¥’ means that we sum between 1 and N but with
the term j =i omitted, and ¥ ,=9,V. Similarly the Lie-
derivative operator (3) becomes

2 I'V+ 2 l (15)
i=1
with the one-partxcle operators
IW=(P#/m)3/3X )+ (m /m)(d/IEH) (16)

and the two-particle operators

(2)— _ _9
l,-jz— w(X XJ)E) "
V (X, —X & — 9 (17
(X =X §j)a7r¢,
They have the important property that
[dx,I{VF(xy, . .., xy)=0
(18)
JdxPFxy, ..., xp)=0 (j=1,...,N)
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for any function F, since in each term there is one in-
tegration which is over a total derivative. In formula (18)
there is no sum over i. Because we are considering indis-
tinguishable particles, 5 and A must be totally symmetric
in the “‘supercoordinates” y;. (Note that despite the an-
ticommuting ghosts no antisymmetric, “fermionic,” g
can be allowed since g corresponds to |¥|? in quantum
mechanics.) Being totally symmetric, A say, can be
parametrized in terms of zero-, one-, two-,. .. particle
functions A; (s =0,1, ..., N) according to Ref. [9],

AX1:X2s - - - > Xnst)

N
=AM+ 3 A(x )+ 3 Axx,t)
i=1 ij
i<j
+ 3 Ks(Xi»Xj,Xk,t)+ T (19)
ijk
i<j<k
The functions A, are symmetric under permutation of
their indices and they cannot be decomposed into a sum
of functions depending on less variables. Inserting Eq.
(19) into the action 4 = fdtL appearing in Eq. (11),

Z= [d™Alxy, ..., xn> )8, +1,]
XPp(X1s -+ s Xnot) (20)
we obtain a decomposition of the form
—_— N p—
=3 L, 21)
where £ is the part containing A,;. Changing the in-

tegration variables from A to the set {A,}, and noting
that the Jacobian is an irrelevant constant [8], the func-
tional integral becomes

Z= [DRSODA, (X1, )DAAX 1, X ) "+

X exp

s=1

N
ifdtzzsl. (22)

It is convenient to express A in terms of the s-particle re-
duced distribution functions [9] defined in the usual way:

i - ——— [dx, 4"
Xp(Xys -5 Xn) - (23)

-’Xs) dXN

(N—s)'

What is new is that in our case the {f,} are superfields.
The first example is
|

[0, +(PF/m)d/3X )+
— [dx, (v, (X,
[, +(P¥ /m)(3/dXH )+ (wh /m)(3 /3E}) +
—V (X — X ) —
— [dxsv (X,

(t /m ) (3 /3EM 1 f 1 (X1, 1)
—X,)(3/3PE)+V (X, —X,)(E]—

ENB/Am) =V (X, —

—X3)(8/3PH)+V (X, — X, ) (€] —

END/m)+V (X,
+V (X,

fl(Xl)szdX2"'

which has a superfield expansion of the form

(
S SR,

pg=1

dXNﬁ(XbXZ’ LRI ’XN) ’ (24)

(B gy e
(25)

The path integral (22) gives rise to the (generalized)
BBGKY hierarchy in the following way. The Lagrang-
ians L are of the general form

I,=[dy, - dx,A(xy, - -

[1lx)=

,Xs’t) ’
(26)

s Xso V(X - - -

where F; is some functional of the f’s. Inserting (26) into
(22) and performing the A; integrations one obtains a
product of 8 functions which forces all the F,’s to vanish:

F,=0, F,=0, F,=0,.... 27

This is a set of coupled integro-differential equations for
the f°s which coincides with the usual BBGKY hierarchy
if one omits the higher ghost sectors [8], and it yields an
extension of it in the general case considered here. We
list only the first few members of this hierarchy. One
finds

Z,= 0(z) fd2"¢p<¢,z) (28)

Z1:de1/~\1(X1;t)[(az+l(1“)fl(X1’t)

+ [ a0 31, 00xt) | (29)

—%deldszz(Xl’Xzyt)

X[(a,+l‘1”+l(2”+l(122)+l(221))f2()(1,)(2,t)

+(l(l%)+l(2§) )f3(XbX2vX3’t)] . (30)

In deriving these equation we made use of Egs. (15), (18),
and (23), and of the symmetry of A; and 5. In Eq.
(28) the ordinary scalar density p(@,t) is defined by

=p(¢)c'c?---c?+ --- where the --- denote terms
with less than 2n ghosts. Thus the lowest equation of the
hierarchy, F,=0, expresses the conservation of the total
probability:

%fd2"¢p(¢,t)=0 : 31)

The equations F; =0 and F, =0 read

E)(3/3m)1f5(X1,X21)=0, (32)
(PE /m)(3/3X% )+ (m /m)(d /dEL) —
X,)(3/0P%)—

V(X —X,)(3/8P%)

V(X=X )€ — YN8 /0m5) 1 f (X1, X 25 8)
—X;)(3/3P%)

—X3)(6—E3)(8/9m) 1 f3(X 1, X2 X3, 8)=0 . (33)
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We can continue this way for F;, F,, etc. These equa-
tions could be written as conventional integro-differential
equations, i.e., as equations without Grassmann variables,
by inserting the superfield expansions [like Eq. (25), for
instance] for the distribution functions f;. The result
would be a set of equations for the expansion coeffic-
ients {ff‘l")‘,?: iy ..qu(¢,t), -+ +}. These functions are
characterized by the level s in the hierarchy
(s =0,...,N), and by their degree as tensor fields, i.e.,
their ghost numbers with respect to & and 7.

The reader might ask which is the physical meaning of
the higher p-form fields. Let us recall the role played by
the ghost-zero modes c?(t) in Ref. [2]. They are solutions
of the classical Jacobi equation and thus can be written as

cUt)=St,¢y)c?0), (34)
where the symplectic matrix S{ is a solution of

(8,82 —d,h%dy(t,do))1S2(t,$0)=0 (35)

and ¢ (¢,¢y) is the solution of Hamilton’s equation with
6.(0,09)=¢,. Knowing the Jacobi field c¢“¢) around
some classical solution ¢, we can use the associated ma-
trix S§ to construct a singular solution of Eq. (5), for
p =1, say

pa (6, 8)=8 " 1(t,00)eps (008 (p—ei(t,89)) . (36)

This field has support only along the trajectory ¢(z,dg).
It describes the evolution of a nearby classical trajectory
with initial separation p,(0) from ¢(0,¢,). Nonsingular
solution of (5) can be obtained from (36) by smoothing
out the initial conditions ¢, and p,(0) with some arbi-
trary distribution P(¢g,p,(0)). Then the resulting 1-form
field p{!)(#,¢) encodes information about the Jacobi fields
around all possible classical trajectories, i.e., trajectories
starting at any point of phase space. For a system of
identical particles we can introduce the reduced distribu-
tion functions f; as in the conventional p =0 case. Then
a function like f f}’)‘i))(@), say, which appears in the sum
J

_ N
L= [dx,A(x1) ‘{a,+1“>}Nde2 e dX X XD S N [dx, Ay ERX X t)
j=2

N
If we note that 3;—, [dx,, ...,dxyIP(xy, ..
Jdx I PN(N—1) [dxs - - dxnplXy, -
N(N—=1) [dxs- - dxypxs - - -

of Eq. (25), describes the Jacobi fields (in the &* direction)
on the one-particle phase space {X;,P;}. It tells us how
an initial shift of the X, coordinates is propagated in
time. Similarly f f?')}-)(&\l) describes the effect of an initial
momentum shift, etc. This kind of information might be
important for the study of turbulence or the chaotic be-
havior of a plasma, for example. Work is in progress to
“translate” all the important concepts related to chaos in
terms of our formalism. In particular we have found a
way to rewrite the highest Liaupunov exponents in terms
of ghost condensate. This work [11] is in preparation.
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APPENDIX

In this appendix we will show in detail how to derive
Eq. (29). Let us start from the general definition of £,

— N
"le 2 deI T dXNAl()(i,t)[a,+lh]

i=1

XP(X15X2s -+ - » XNot) - (A1)

Due to the fact that [9,+1, 15(X ;X2 - - - > Xn»t) 1S sym-
metric in all );, the formula above reduces to

Z,=N [dx,Ax,0) [dx, - dxy
N
X (9, + 3 N+ 3 1P Xy - Xnst) - (A2)
i=1 i,j

Because of formula (18) only the term i =1 contributes to
the formula above, so we are left with

. (A3)

yXn»>t) yields (N —1) equal terms, and so it is equal to
., XN»t), and if we call Nfd)(z,..
s Xnot) =f5(X1,X2 1), then Eq. (A3) can be written as

. ’dXNﬁ(X1> LRI ’XN’t)_:—fl(XI’t) and

Z1=fd)(1A1()(1,t) [{8,+l(11)}f1()(1,t)+ dezlgzz)fz(Xth’t)} .
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